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Abstract. We give a definition of quantum states which behave classically based on minimal
number of physically reasonable requirements. We prove that an infinite unique class of states
exists which satisfies this definition and we show that every state from this class may be generated
in the unique way departing from some corresponding strictly quantum state. We discuss some
implications of the obtained results.

1. Introduction

In all practical applications quantum mechanics works exceedingly well. Thus far no
example has been found for which predictions of quantum mechanics are in conflict with
experiment. In this respect quantum mechanics is one of the most reliable theories ever
known. Yet quantum mechanics has some fundamental problems which are the subject of
many controversies. One of them is the problem of the transition from quantum to classical
mechanics. There is an enormous amount of literature devoted to this problem. It would take
a lot of space just to mention all the authors who have dealt with this problem. We shall only
point out that during the last few decades significant progress has been made in elucidating
the problem, as described, for example, in the review of Omnes [1], but that a satisfactory
solution has not yet been achieved. Consequently, any contribution which can clarify any
aspect of the problem is of great value. The purpose of this paper is to try to clarify one
important aspect of the relation between quantum and classical mechanics. It concerns the
question of when we can say that a given quantum state behaves classically. In the current
literature one can often find statements that some quantum states behave classically, but, to
our knowledge, there is no explicit, precise and general criterion which would enable one
to test whether a given quantum state behaves classically or not. In fact, such a criterion
should, at the same time, give a precise meaning to the very term ‘classically behaved
quantum state’. We think that this is a necessary intermediate step toward the ultimate
understanding of the relation between quantum and classical mechanics. In the next section
we give one such criterion and find the unique infinite class of states which satisfy this
criterion. In the last section we discuss the obtained results.

2. Theory

As quantum mechanics is inherently a statistical theory, a natural approach to investigate
its classical limit is to compare it with classical statistical mechanics. The easiest way to do
this is to describe a quantum state by its corresponding quantum phase-space distribution.
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In classical statistical mechanics the physical state is described by the non-negative
phase-space distributionρ(q, p). The average value of any physical quantityf (q, p),
which is a function of coordinate and momentum, may be represented in the form

〈f 〉cl =
∫
f (q, p)ρ(q, p)dp dq.

In the standard formulation of quantum mechanics the average value for the same
physical quantity, in the state described by the density matrixρ̂, is given by

〈f 〉q.m. = tr ρ̂f̂

where f̂ is the quantum-mechanical operator corresponding by the accepted rule of
quantization to the classical functionf (q, p).

In phase-space formulations of quantum mechanics, average values may be represented
in a structurally equivalent form to the classical one, with phase-space quasidistribution
having the role of the classical probability distribution, after ascribing to the quantum
operatorf̂ the functionf̃ (q, p), which corresponds to the operatorf̂ in this phase-space
formulation. However, except in Wigner phase-space formulation of quantum mechanics,
the functionf̃ (q, p) differs from the original functionf (q, p) from which the quantum
operatorf̂ was obtained.

Obviously, the quantum state may be considered to behave classically in the sense of
classical statistical mechanics if the following conditions are fulfilled.

(1) The quantum phase-space distribution describing this state is non-negative.
(2) The exact quantum-mechanical average values for all physical quantities in this state

are, to the required accuracy, equal to the average values obtained using the formulae of
classical statistical mechanics, where the considered quantum-phase distribution plays the
role of the classical phase-space probability distribution and the physical quantity whose
average value is calculated is represented by the classical phase-space function—the same
one from which the quantum operator of this quantity was derived.

(3) The quantum phase-space distribution evolves in time to a given accuracy according
to the classical Liouville equation.

By our definition the quantum state behaves classically if it fulfils these three conditions.
The definition is justified by the fact that all classical states, in the sense of classical statistical
mechanics, are described by non-negative phase distributions which evolve in time according
to the Liouville equation and that all information about the state may be obtained by finding
average values of various physical quantities.

Now we will give one example of such quantum-mechanical states and then prove that
this is the unique class of such states.

For simplicity, we treat the one-dimensional case.
The first condition is, by definition, satisfied by every Husimi distribution [2], however,

exact quantum-mechanical average values differ from average values obtained from such
distributions in the classical way in the sense just explained [3]. When Wigner functions
are used for the description of a state, quantum-mechanical average values are calculated by
formulae which in their structure are identical with classical formulae in which the Wigner
function plays the role of probability distribution. However, the Wigner function is not
non-negative, and in the general case does not satisfy the classical Liouville equation [4, 5].

Let us consider now any quantum state whose Husimi distribution isD(q, p).
Transforming this function toλ2D(λq, λp) where λ < 1, the new quantum state will
be obtained, but the transformed function will again be the Husimi distribution [6]. Now,
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between the Wigner function and the Husimi function exists the relation [7]

W(q, p) = exp
[
−1

4

∂2

∂q2
− 1

4

∂2

∂p2

]
D(q, p). (1)

Note that we have set ¯h = Mω = 1.
If we take sufficiently smallλ which depends of the required accuracy, and because

every differentiation with respect toq andp introduces multiplication by the small parameter
λ, we shall have, forλ-transformed states to the second order inλ

W(q, p) ≈ λ2D(λq, λp). (2)

Now, exact quantum-mechanical average values for any dynamical functionf (q, p) in a
state described byW(q, p) are given by [5]

〈f 〉 =
∫
f (q, p)W(q, p)dq dp (3)

and forλ-transformed states we have according to (2) and (3)

〈f 〉 ≈
∫
f (q, p)λ2D(λq, λp)dq dp. (4)

This formula represents the quantum-mechanical average value to the same accuracy to
which (2) is valid. It has exactly the classical structure so that forλ-transformed states our
first two conditions are fulfilled.

The time evolution of the Husimi distribution is described by the equation [8, 3]
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For λ-transformed states, neglecting the derivatives of distribution function of the second
and higher orders, this equation reduces to the classical Liouville equation

∂λ2D(λq, λp)

∂t
= − p

M

∂λ2D(λq, λp)

∂q
+ ∂V (q)

∂q

∂λ2D(λq, λp)

∂p
. (6)

So,λ-transformed states also fulfil our third condition.
This means that both in accord with our definition and the general physical intuition

and practice, these states belong to the class of quantum states which behave classically. In
this way our definition has a non-empty domain.

Are there some different, non-λ-transformed states, which satisfy all the above three
conditions?

We will prove now that all quantum-mechanical states which satisfy the above stated
three conditions, i.e. which behave classically, may be represented asλ-transformed states.

A Husimi function which behaves classically must be slowly varying function such
that its derivatives must be much smaller than the function itself because only in this case
average values of any quantityf (q, p) may be obtained with the required accuracy by using
classical formulae.

Since every Husimi function may be represented in the form

f (q, p)e−βp
2−γ q2

(7)

both f (q, p) and the exponential function must be slowly varying and this implies thatβ

andγ must be small.
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Now, as (7) is a Husimi distribution the expression

f
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(8)

must be positive definite [9]. In order that the function

f (µq,µp)e−βµ
2p2−γµ2q2

which is a Husimi distribution forµ = 1 remains a Husimi distribution forµ > 1 the
following expression must be positive definite [9]

f
(
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2
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4
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]
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(9)

Comparing this expression with (8) it is obvious that the first factor after transformation
remains positive definite. The second factor, which is a Gaussian function, will be positive
definite when [9]

1− µ2(γ + β) > 0

i.e

µ2 <
1

γ + β . (10)

As γ + β is a small number so that1
γ+β � 1, the inequality (10) may be satisfied when

µ is much greater than unity and this means that every Husimi function which behaves
classically may be represented asλ-transformed state.

3. Conclusion and discussion

We have proved thatλ-transformed states behave classically and that all states which behave
classically in the sense of our definition, may be represented asλ-transformed states of states
which are essentially non-classical. This last fact has an essential consequence. Namely,
according to one of our earlier results [10], allλ-transformed states are unavoidably mixed
states. This means that pure states can never behave classically in all respects. A pure
state can never become a mixed state without interaction with its surroundings. From this
it follows that a classically behaved state must necessarily have non-negligible interaction
with its surrounding, at least in one part of its evolution. The analogous conclusion was
reached by various authors in different ways [1].

It is important to underline, thatλ-transformation of a Husimi distribution is not merely
a formal mathematical transformation, but that this transformation may be interpreted
as the Glauber most quiet phase-insensitive amplification of the initial state [10]. So,
Glauber amplification process [11–13] may be considered as one possible concrete model
for decoherence of a quantum state but of course not the unique model.

Although, for simplicity, we restricted our considerations to the one-dimensional case,
the obtained results may be generalized to three space dimensions in a way analogous to
that used in [14] for Wigner functions. Also, the results are valid for all physical systems
which may be described by non-relativistic Hamiltonians which are functions of coordinate
and momentum of any form.

Our approach is limited to the non-relativistic physical systems and so is not applicable
to spin degrees of freedom, because spin does not have a classical analogon so that our
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condition (2) cannot be applied. However, when the state is such that the spin dependence
factorizes, as is the case in non-relativistic situations, all our arguments remain valid for
physical quantities which have a classical analogon.

Let us note that although our way of presentation was such that the Weyl quantization
was tacitly assumed, equation (3), the results are not sensitive to the ordering ambiguity.
Namely, when the state is described by the Husimi function, in the expressions for exact
quantum-mechanical average values, the same classical term appears in every ordering [3]
while the other terms, which are different for various orderings, always contain some powers
of Planck constant as multiplicative factors. Due to this for smallλ—i.e. in the classical
limit—all of them, in every ordering, become negligibly small compared with the classical
one, and only the classical term which is the same in all orderings survives in this limit.

It should be noted, as may be easily verified, that the portion of phase space over
which λ-transformed states extend is approximately1

λ2 times larger than that for the
corresponding initial states. Assuming now thatλ is such that these states may be considered
to behave classically, an interesting question arises concerning how narrow they can be or,
equivalently, how close to unityλ can be. A general quantitative answer to this question
cannot be given. Evidently this depends on the overall accuracy required for the fulfilment
of our condition (2) and various physical situations, depending on the problems which may
be considered, may require different accuracies.
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